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LOCAL-EQUILIBRIUM FORMALISM APPLIED TO
MECHANICS OF SOLIDS

JosepH KESTIN
Brown University, Providence. RI. U.S.A.

Abstract—The lecture starts with an expression of good wishes to George Herrmann on the occasion
of his seventieth birthday and continues with a lament that the majority of research workers in the
field of solid mechanics have failed to appreciate the power and relevance of “conventional™
thermodynamics which is based on the acceptance of the hypothesis of local equilibrium (principle
of local state). The lecture then proceeds to motivate the essential concepts of conventional ther-
modynamics and emphasizes the differences between the description of nonequilibrium states in
physical space and equilibrium states in the Gibbsian phase space. It is asserted that the subject
acquires its simplest form by the recognition of the relevance of Bridgman's internal variables. With
their aid it is possible to define the accompanying equilibrium state and the accompanying reversible
process. An elimination of internal energy between the field equation of energy (First Law) and the
Gibbs equation in rate forni results in an explicit expression for the local rate of entropy production,
0. It is asserted that the preceding clements supplemented with appropriate rate cquations result in
a closed system of partial ditferential equations whose solution, subject to appropriate initial and
boundary conditions, constitutes the pracess (“history™) under consideration,

Physics. whether we choose to call it Thermodynamics should not be impotent in the face
of any situation which can be completely characterized by measurements with macroscopic

nstruments.
P. W, Bndgman, 1950

I. PURPOSE

My purposc in preparing this, of necessity brict lecture, is twofold. First, [ wish to associate
myself with all the Symposium participants and fricnds who could not be present with us,
in wishing George Herrmann many healthy years of productive work and undiminishing
creativity.

My second purpose is once more to give an outline of the application of conventional
thermodynamics to the analysis of problems in the mechanics of solids with emphasis
on nonelastic behavior. Conventional thermodynamics rests on the hypothesis of local
cquilibrium (which [ prefer to call the principle of local state), made explicit independently
by Mecixner (1954, 1959) and Prigogine (1947, 1967) and coditied, in its application to the
mechanics of fluids by de Groot and Mazur (1962).

In doing so, [ express the conviction that a systematic and sustained development of
its power in the study of stress and strain in metals would allow the subject to realize
Gibbs's (1881) philosophical credo:

One of the principal objects of theoretical research in any department of knowledge is to find the point of
view from which the subject appears in its greatest simplicity.

In the year 1979 (Kestin and Bataille, 1980) [ wrote

If 1 had been asked—say fifteen years ago [i.e., circa 1965] —whether there were any difficulties in applying
the principles of thermodynamics to the inclastic processes which occur in strained metals, | would have,
most emphatically, answered in the negative.

The intervening years revealed two principal difliculties. The first resulted from a
vigorous attack on the tenets of conventional thermodynamics. Itis true that certain features
of the local-equilibrium formalism suffer from acsthetic flaws. The formalism lecads to
infinite velocities of propagation of small disturbances and results in parabolic rather
than hyperbolic differential equations for thermal conduction and diffusion. It evades the
problem of assigning a numerical value of entropy and temperature to nonequilibrium
states, which are always continuously present in irreversible processes, by equating them
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with those of an accompanying equilibrium state and introduces. without quite formally
admtting it, an expression for the entropy flux which only approximates that derived in
kinetic theory. However. this is no reason to reject it. because it is a fact that nearly all
of applicable flutd mechanics and an tmpressive variety of phenomena treated in such
consummate detail by Meixner and Retk (1939), as well as de Groot and Mazur (1962).
rest firmly on the acceptance of the principle of locul state. ¥ The concomitant Onsuger -
Casimir relations. just as countless other consequences and corollaries, have found reliable
confirmation by experiment, as shown in detail. ¢.g.. by Miller (1973). Taking a pragmatic
point of view, [ muintain that this simple formalism satistics one more Gibbsian credo

...t is the office of theoretical investigation to give the form in which the results of experiments may be

cxpressed.

In short, I believe that a more widespread use of conventional thermodynanucs in the
study of problems in the mechanics of solids will lead to simplicity of presentation and
agreement with experimental results.

The second difticulty. which T discovered subscquently, s that this marriage between
thermodynamics and continuum mechanics was neither simple nor straightforward. The
difficultics were (and still are) particularly acute in the study of plastic deformations, starting
with Bridgman™s (1941, 1950) belicf that an ecquation of state for a plastically deformed bar
“does not exist™ and that its state is immersed in a “sea of irreversibility ™. As noted before
(Kestin and Rice, 1970), we may be baftled by superticial “paradoxes™ and, in genceral, the
problem of ecnumerating a proper set of independent and dependent thermodynamic vari-
ables has been solved for a limited number of cases only. This weakness still persists in
relation o the essential internal vanables to be introduced later.

2 BACKGROUND

The subject of "conventional™ thermodynaniics, as 1t s taught, more or less correctly,
in the academic departments of engincering in the civilized world, and the subject of solid
mechanics, often taught as strength of materials, have developed largely independently of
cach other. Although both, ultimately, allow engineers to use them for destgn and testing
with rather satisfactory results, they are not consistent with cach other. They certainly failed
to converge to this day. In a situation like this it is quite natural to think that, perhaps, the
foundations of both disciphines are at fault. [tis interesting to note that thoughts of this kind
compelled Bridgman, when he analyzed plastic deformation, to write:

There is a two-fold problem here  the problem of extending the conceptual machinery <o as to be able to
handle the new situations, and the experimental problem of finding what the facts are in the new domain.

It is symptomatic that several circles of scientists felt compelled to invent a new and
more “rational” version of thermodynamics, pungently presented by Truesdell (1984).F
Nevertheless, T still believe that “nothing so drastic as a complete revision of thermo-
dynamics is really needed™ (Kestin and Bataille, 1980). The development of “rational™.
and other competing versions of thermodynamics, have compelled the more traditional
practitioners of the subject to sharpen their thoughts, concepts and words. However, since
the revisionists prefer to work in universes of discourse which differ from that of the
traditional thermodynamicist's, there has arisen a new vocabulary, and the alternative
camps have bogged down in semuantic ditlicultics. In short, in this first year of the last decade
of the twenticth century, a student of the joint discipline of continuum thermodynamics and
mechanics of solids faces a veritable Tower of Babel

1 do not intend to create a dictionary of the several languages now in use. And just as
in linguistics, the words do not stand to cach other in a onc-to-one correspondence. | shall

+ There exists a similir situation in mechanics (toures proportions guardies). We have notscornfully forsaken
Newtonian mechanics just because it is based on the nebulous concept of an inertial frame of reference. equates
the m in two equations without reference to an axiont and fails to caleulate i correct orbit for the planet Mercury.
Arc we forbidden to caleudate the orbit of balls on o illard table without reference to general relativity or, even,
without accounting for Coriohs forces?

+ Several other versions have also been proposed. See Kestin (19960)
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merely explain the meaning of several concepts. which are essential to my presentation. in
order to let my audience understand the resulting formalism—whether they accept it as
valid or not.

3. BASICS

At the most fundamental level. thermodynamics speaks about systems rather than
materials and makes a clear distinction between the state of the system (equilibrium or
nonequilibrium) and the process (reversible or irreversible) undergone by the system. In
this universe of discourse a material with time-dependent properties or a muaterial with
memory represents systems which perform a process during the time they are observed.
Similarly. history represents a process which has occurred between a specified inttial state
and the state under consideration. Relations between the properties (variables) of equi-
librium states are formulated as equations of state, a special role being reserved for fun-
damental equations of state from which all others follow by differentiation alone. The
corresponding statements about nonequilibrium states are in need of an elaboration which
will be presented in Sections 4-7.

A reversible process is conceived as a continuous sequence of equilibrium states in time
whereas an irreversible process consists of a spatially distributed sequence of nonequilibrium
states varying in ttme. During an irreversible process the system as well as parts of it
(“subsystems™) interact with each other. The processes of interaction are described by rate
(evolution) equations. A fundamental equation together with an appropriate set of
rate cquitions form the concept of a constitutive law favored by nonconventional
thermodynamicists.

Without attempting to complete this sketchy vocabualary, [shall further point out that
in conventional thermodynamices stored energy does not oceur but s understood as the
difference in the values of some thermodynamic potential (internal encrgy, Helmboltz free
energy, cte.) between two states when one of them is normalized by an (often implicit)
convention. This is due to the fact that the definition of any potential leaves an arbitrary
additive constant unspecificd.

4. STATE

Having indicated some of the semantic problems that members of my audience may
experience, [ shall proceed with this exposition using the concepts and terminology of
conventional thermodynamics,

The concept of state is best explained by making a distinction between the physical
space and the (Gibbsiun) phase or state space. Attention is centered on irreversible processes
as they, necessarily, occur in i system, treated as a continuum, throughout which the states
are distributed spatially and evolve in time. Accordingly, we consider an element (“point™)
Ab(x, 1) of a continuum B (Fig. 1), and indicate for it a sclected number of extensive

avin,1)
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Fig. 1. Physical space.
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a

Fig. 2. Gibbsian phase (state) space.

variables, that is the fields of internal energy per unit mass u(x. ). a set of deformation
parameters a(x. 1), and a set of internal variables x(x. 1).

At this point it is necessary to make a digression in order to motivate the introduction
of the concept of an internal variable x. following its clearest expression by Bridgman. In
our specific case we shall describe the external deformation of A1 by the field of linearized
(small) strain per unit mass p ' £, (=a). with p = const., fully adequate for the treatment
of elastic and inelastic deformations in metals. Elements A} of metals which can perform
inelastic, irreversible processes are not homogeneous and thus capable of undergoing
internal transformations, such as growth of dislocations, plastic flow, diffusive migration
of atoms, slow chemical reactions, ete. Observations contirm that a thermodynamic descrip-
tion ol the internal state (deformation) of the element A1 can be obtained by accepting
Bridgman's (1941) insight.+

I believe that in general the analysis of such systems will be furthered by the recognition of a new type of

large-scale thermodynamic parameter of state, namely the parameter of state which can be measured but

not controlled ... These parameters are measurable, but they are not controllable, which means that they

are coupled to no external foree vartuble which might provide the means of control. And not being coupled
to a foree vartable, they cannot take part w mechanical work.

The view is that, connected to the outside, cach site would produce work
di,, = A, dx,  (sum for n sites) (1)

reversibly, Terms of the type of eqn (1) do not appear in the ficld equations which govern
the evolution of the fields in time.

Reverting to the physical space (Fig. 1), we note that the nonequilibrium clement Al
interacts with its surroundings during an irreversible process through a transfer of work
and heat. In general, these interactions are described by the field F(x, 1) of generalized
forces (in our case F = g,,—the Cauchy stress), the work being

diW =F-da (or —p 'o,ds, inourcase).t (2)

The transfer of heat is deseribed by the heat-flux vector field g(x, ). In contrast with
a and 2. F and q cannot be added over the volume elements A} to produce a value for the
system as a whole.

The equilibrium state of an clement is uniquely described by the set

toaa), 3)

and the interaction vectors F and q vanish identically. Such a state can be conveniently
represented as a point in a space with coordinates u. a, x sketched in Fig. 2, the Gibbsian
state space. A curve R in this space represents a reversible process and it is implied that the

+1 cannot restrain myself from remarking that 1 find it difficult to understand why so compelling an

interpretation has not found immediate and universal acceptance.
+ Work done by the system is reckoned positive, and the usual convention for stress is followed.
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Fig. 3. Relation of nonequilibrium states # to state space.

internal sites are now connected to the outside. Thus. the work element on curve R is the
sum

diWW =F -da+A -dx 4

At this point the reader must realize that the forces, F, required to produce work on
element AV in the physical space will be different from those which act on it during a
hypothetical. reversible process R. By contrast. the extensive variables u. a, x have been so
selected that the corresponding nonequilibrium quantitics possess unambiguous meanings
in physical space.

In the case of a metal, eqn (4) 1s written

dW' = —p 'a, de, + A, dx, (5)

and the Gibbsian state space consists of seven variables, u, p 'z, owing to the symmetry

€, =&,

5. ACCOMPANYING EQUILIBRIUM STATE; ACCOMPANYING REVERSIBLE PROCESS

Whereas the set (3) is sufficient to specify a unique equilibrium state, the number of
parameters needed unambiguously to specify a noncquilibrium state is much larger, given
that the set (3) is included already. This situation is illustrated in Fig. 3. The base manifold
symbolizes the hyperspace of equilibrium states r{u, a, 2}. An irreversible process / starts
with an equilibrium state ¢, and develops nonequilibrium states # which must reach outside
of r. For the purpose of further analysis, we shall associate an equilibrium state r with cvery
state #, so that

u(r)y = u(n), a(r) =a(n), =x2(r) = a(n). (6)

We shall call r the accompanying equilibrium state to nonequilibrium state n. The possibility
of this association rests on the alrcady mentioned obscrvation that u, a, x have a defined
meaning for nonequilibrium as well as for equilibrium states. The same cannot be said
about the conjugate, intensive quantities F and F°. Underlying the transformation n — r is
the Gedankenexperiment illustrated in Fig. 4. We imagine that the element AV in state n

in physical ) in state
space Q =W= 0 space
T,5 L ——— 5> Te,S°
relaxation
time
u,a,a u,0,a
._T
De= 375

Fig. 4. Creating accompanying equilibrium state by a Gedankenexperiment.
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is suddenly surrounded by a rigid enclosure so that no external work F-da can be done on
it and a is thus kept constant. We further postulate that the enclosure must be adiabatic.
inhibiting the flow of heat. Finally. we let the internal variables x be arrested (frozen). so
that x = const. during n — r. Since no work or heat is exchanged along n — r. the internal
energy. u. must also remain constant. In this manner the conditions of this thought experi-
ment guarantee that conditions (6) are satistied. and we describe process n — r as one of
an adiabatic projection in the enlarged state space. The process of equilibrium from n to
r will involve a characteristic relaxation time . made nondimensional by the external
characteristic time a a and describable by the Deborah number

(N

We can go further and regard the reversible process R, imbedded in the space of
equilibrium states, as the accompanying reversible process to /. We postulate that the rate
at which [ progresses in time is imposed on R, so that we picture here a reversible process
as one which occurs at a finite rate in contrast with the historic presumption that a reversible
process must occur “infinitely slowly™ or must be the result of the convergence from a real
process when its rate is reduced to zero. T do not think that the concept of a reversible
process oceurring at a finite rate does violence to our physical imagination. However, if the
audience members remain unpersuaded they can imagine that, departing from cquilibrium
at any state r, the system keeps continuously reverting to itt with a negligibly short
relaxation time (De = 0).

The various proponents of unconventional versions of thermodynamics often make
proposals regarding an enfargement of the manifold of states so that it would also include
states of noncquilibrium in 'which R could be imbedded. However, no single, convincing
proposal has yet arisen. In this lecture we emphatically do not enlarge the Gibbsian space
in order to pave the way for a clear statement of the principle of local state. The insistence
on choosing exclusively the set (3) of extensive variables has made it possible to define a
unique accompinying equilibrium state r to a nonequilibrium state #. We remind our
audience that the conjugate intensive variables have different values at # and at r so that
the inclusion of even once of them in the state space would make a clear adiabatic projection
troublesome,

6. ENTROPY AND THERMODYNAMIC TEMPERATURE

Muny battles hive been fought over the “correet™ definition of the concept of entropy
(which people widely use and abuse) and of the way Lo assign numerical values of entropy
to states. The controversial problem is with nonequilibrium states. The principle of local
state bypasses this issue in an ad hoc, heuristic way. For this reason, we shall merely recall,
for casy reference, how this problem is handled for equilibrium states.

Here we Fal! back on any standard reasoning (e.g. Carathcodory’s) which asserts that
the expression for heat

dQ = du+dw (8)

along a reversible process (curve R in statc space) possesses an integrating denominator
T(u. a. 7). which can be interpreted as thermodynamic temperature (First Part of Second
Law). Thus,

+ Say. by the coaxing of Maxwell's demon.
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dQ du+F -da+A -daz

ds(u.2.2) = =7 T(u.2.3) @
is a perfect differential assuring the existence of a fundamental equation
s =s(u.a.2) (9a)
which must represent a convex manifold in the state space.
Numerical values of entropy are calculated by integration in the state space.
s(u.a, 1) —s, =J;d—§_2;. (10)

where R is an arbitrary curve in that space, and thus, always represents a reversible process.
Here 5, i1s an arbitrary constant because the integral (10) has the mathematical properties
of a potential. The fact that 5 is a potential leads to additional, very important reliations:

1 _ os(u.a. %)
T cu

(n

reciprocity relations

ete., for F/T and A/T, and

. L UTEEN O 5
reciprocal relations (Maxwell) N = s (12)
fa, Qu

cle., cle.
It should be noted that the integral (10) cannot be evaluated in the physical space,
contrary to what is often claimed in nonconventional versions of the subject.

7. HYPOTHESIS OF LOCAL EQUILIBRIUM (PRINCIPLE OF LOCAL STATE)

Semantically, the phrase hypothesis of local equilibrium is a misnomer, and for this
reason many ol us prefer to call it principle of local state. The purpose of this principle, as
already stated carlier, is to assign a heuristically justified numerical value of entropy to a
noncquilibrium state. Explicit use of this principle was introduced into continuum thermo-
dynamics independently by Meixner in 1941 and Prigogine in 1947,

Disregurding this semantic disagreement, I quote here its statement from the book by
de Groot and Mazur (1962).

1t will now be assumed that although the total system is not in equilibrium, there exists within small mass

clements a state of “local equilibrium™ for which the local entropy s is the same function as in real

equilibrium, In particulur, we assume that the fundamental equation of state remains valid for a mass
clement along its center-of-mass motion. This hypothesis of “local™ equilibrium can, from a macroscopic
point of view, only be justitied by virtue of the validity of the conclusions derived from it.

The gist of this statement has the effect of associating with a noncquilibrium statc,
such as that of clement AV in Fig. |, the entropy and thermodynamic temperature of the
accompanying state. In particular, as is evident from the Gedankenexperiment pictured in
Fig. 4, the entropy s(r) of the accompanying equilibrium state must be larger than that of
the nonequilibrium state s(n) because the former is produced from the latter by an adiabatic,
no-work process. so that

s(r)—s(n)y =06 >0, [s(r) = s(n)] (13)

(Second Part of the Sccond Law), and that the two temperatures are not exactly equal
either,
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Tiry # T(my [T(r) = Tin)). (14)

The principle of locul state disregards (13) and (14) and introduces equalities instead.
as indicated tn the square brackets above.

Historically, the use of the principle of local state has led to furious controversies and
verbal battles. The acceptance of the equalities by muany thermodynamicists was made
palatable by the assertion that they are vahd when “the nonequilibrium state is close to
equilibrium™. Although frequently the equilibrium state in the above sentence is not specified
and no measure of distance from equilibrium i1s provided. we can think of this in terms of
the relaxation times © and an appropriate Deborah number. Here the reader may consult
Kestin (1990).

My own conviction is a prugmatic one. The principle should be accepted in the
mechanics of solids because of its proven performance in many fields. especially in fluid
mechanics as emphasized carlier in Scction . This is the only principle which leads a
research worker to an explicit algorithm for the calculation of numerical values of entropy.
No other competing version of thermodynamics has done this. ¥

8. ENTROPY BALANCE. ENTROPY PRODUCTION

From the practical point of view, the most important result of the tocal-state formalism
is the establishment of an entropy-balance cquation tor a continuum and the derivation
from it of an explicit expression for the local rate of entropy production.

Depending onan author’s taste, it is possible to start with a postulate for the expression
for the entropy flux or to postulate the entropy-balance cquation i its entirety : it is then
called the Clausius—Dubem inequality. In our presentation this takes the form of an equality
and a postulate requiring non-negativity of entropy production,

First, it is assumed that the entropy must have the standard form of a balance,

rate of change +div ( fluxy = source (15)
with
Slux = q/'T. (15a)

Equation (13) is obtained trom a combination of the energy balance (First Law)
written in the physical space and the Gibbs equation written in phase space but expressed
in rate form. The fatter is an expression for the accompanying reversible process with the
rate ol the irreversible process impressed upon itis accordance with the discussion in Section

d.
The energy cquation is

du de,  cy,
= - 16
P T dr oy, (e
The Gibbs cquation in rate form is
du.= Td.\' N | - de, vy (11,,,‘ (17
der de —p " de de

Note the distinction between g, in (16) and a,, in (17), often overlooked even by otherwise
careful authors. This can be traced to the fact that sometimes it is adequate 1o assume

t With the incipient exception of Extended Trreversible Thermodynanues.
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g, = 0, (13)

an assumption patently inadmissible in the derivation of the Navier-Stokes equations.

It is now a simple matter to calculate the Lagrangian derivative p ds/dr by eliminating
du’dt from eqns (16) and (17) and casting the result in the form of a standard balance after
the pattern of eqn (15). We obtain

ds ¢ qx
ds =€ ¢ _ 9
ruta =" (19

where the local rate of entropy production is given explicitly as
T~ I T :‘ A'::
0 = ‘1&- (;) + (I‘L"j‘i éu + Ld"t 2 0' (20)

The requirement that  must be positive ts a sometimes disputed expression of the
Second part of the Sccond Law of thermodynamics.

It is noted that cqn (20) represents entropy production as a sum of products of
genceralized forces into gencralized fluxes.

The expression in eqn {20) suggests consistent forms of rate equations. These must be
written to satisfy the intrinsic symmetries of the system, It s often claimed that the rate
equations must be lincar in the forces and fluxes. [ do not perceive this to be mandatory,
even though in many concerete cases the relations turn out to be genuinely lincur. The
requirement of lincarity is rooted in a reasoning which supposes that the form of ¢ must
be consistent with that which results from a first-order Chapman -Enskog sofution of the
Boltzmann equation for the distribution function of fow-density monatomic gases. But even
this derivation admits nonlincar force flux relations in the presence of chemical reactions,
as demonstrated by Prigogine {1967).

A combination of the standard balance equations of mass, momentum and encrgy
with the rute equations yiclds a closed system of partial differential equations ; their solution,
subject to prescribed initial and boundary conditions, constitutes the process.
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APPENDIX: THE LOCAL-STATE (LOCAL-EQUILIBRIUM) FORMALISM (CONSECUTIVE STEPS)

dW = F -du+d rdx
2. Write down the Gibbs equation :
du=Tdv—F ~du—.1 dx
3. Establish fundamental equation
s=sloa 3} IMSpace (X o

note that all variables are extensive:

use Maxwell's relations

postulate convexity for intrinsic stability.
3a. For T = const. analvsis use Legendre trunsform:

du—Ts) =df = —sdT—F -da—d -dn

and f=f(a. 2) with T as parameter.

4, First Law in physical space
hereseta =g /pand F = a,

du de, <qs

y =, e
- dr oy

¢, satisties compatibility.

5. Gibbs cquation in rate form

de ds 1 de, dx,,
S a, ,
dr dr p T de dt
6, Eliminate duw/ds from 4 and 5 above:
ds  a,—a, . A [N
P . VI S S
Y oty v

7. Transform 6 to standard balunce equation form and use ¢,/ T as entropy flux:

ds + A or! + Gy, + pel, p d=0
) - = e | 4 "4, =, =0;
ParTav\r) T8\ g T

here ¢ is the local rate of entropy production per unit volume.

8. Formulate rate squations,
9. Set up ficld equations and solve a system of partial differential equations.
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