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Abstract-The lecture starts with an expression of good wishes to George Herrmann on the occasion
of his seventieth birthday and continues with a lament that the majority of research workers in the
field of solid mechanics have failed to appreciate the power and relevance of "conventional"
thermodynamics which is based on the acceptance of the hypothesis of local equilibrium (principle
of local state). The lecture then proceeds to motivate the essential concepts of conventional ther­
modynamics and emphasizes the differences between the description of nonequilibrium states in
physical space and equilibrium states in the Gibbsian phase space. It is ass.:rted that the subject
acquires its simplest form by the recognitil,n of the relevance of Bridgman's internal variables. With
their aid it is possible to define the accompanying equilibrium state and the accompanying reversible
process. An elimination of internal energy between the field equation of energy (First Law) and the
Gibbs equ'ltion in rate form results in an explicit expression for the local rate of entropy production,
0. It is asserted that the preceding elements supplemented with appropriate rate equations result in
a dosed system of partial differential equations whelSe solution, suoject to appropriate initi••1and
boundary conditions, constitutes the procc'" ("history"lunder consider<ltion.
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1'. W. Bridgman, IlJ;O

I. I'U RI'USE

My purpose in preparing this. of necessity brieflectun:. is twofold. First. I wish to associate
myself with all the Symposium participants and friends who could not be present with us.
in wishing George Herrmann many healthy years of productive work and undiminishing
creativity.

My second purpose is once more to give an outlinc of the :tpplication of conventional
thermodynamics to the analysis of problems in the mechanics of solids with emphasis
on nonelastic behavior. Conventional thermodynamics rests on the hypothesis of local
equilibrium (which I prefer to call the principle of loc:l1 st:ltc). made explicit independently
by Meixner (1954,1959) and Prigogine (1947. 1967) and codified. in its application to the
mechanics of fluids by de Groot and Mazur (1962).

In doing so. I express the: conviction that a systematic and sustained development of
its power in the study of stress and strain in metals would allow the subject to realize
Gibbs's (1881) philosophical credo:

One of the principal objects of theoretical research in any department of knowledge is to find the point of
view from which the subject appc'lrs in its .<I'l'Ull'SI simplicily.

In the year 1979 (Kestin and Bataille, 19~O) I wrote

If I had been asked-s'IY Iift~"Cn ye.lrs ago (i.e., circa 19651-whether there were any difficulties in applying
the rrincirles of thermodynamics to the inel'lstic rrocesses which occur in strained metals, I would have,
most emrhatically, answered in the neg.Hive.

The intervening years revealed two principal dilliculties. The first resulted from a
vigorous attack on the tenets ofconventional thermodynamics. It is true that certain features
of the local-equilibrium formalism suffer from aesthetic flaws. The formalism leads to
infinite velocities of propagation of small disturbances and results in parabolic rather
than hyperbolic differential equations for thermal conduction and diffusion. It evades the
problem of assigning a numerical value of entropy and temperature to nonequilibrium
states. which are always continuously present in irreversible processes. by equating them
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with those of an accompanying equilibrium state and introduces. without quite formally
admitting it, an expression for the entropy tlux which only approximates that derived in
kinetic theory. However. this is no reason to reject it. hecause it is a fact that nearly all
of applicable fluid mechanics and an irnpressi\e vanety of phenomena treated in such
consummate detail by \teixncr and Reik (1959). as \\ell as de Groot and \lazur (1962).
rest firmly on the acceptance of the principle of local state.t The concomitant Onsager .
Casimir relations. just as countless other consequcnces and corollaries, have found reliahle
contirmation by e.'(periment. as shown in detail. e.g .. hy \liller (1973). Taking a pragmatic
point of view, I maintain that this simple formalism satisfies one rn,)re Gibhsian nedl):

.. It is th~ "tli,~ "I' th~"r~tl\'ctl imL'stigdll"n to gl\~ th~ r"rtll In which thL' r~sults "I' ~\p~rtml:nls l11d~ b~

C\prcss~d.

In short, I bclieve that a more widespread use of conventionalthcrmodynamics in the
study of problems in the mechanics of solids will lead to simplicity of presentation and
agreement with experimental results.

The second dilllculty, which I discovered subscql1l:ntly. is that this marriage hctween
thermodynamics and continuum mechanics was neither simple Iwr straightforward. The
dilliculties were (and still arc) particularly acute in the study of plastic deformations. starting
with Bridgman's (1941, 1950) belief that an equation of state for a plastically deformed hal'
"dot:s not exist" and that its state is immersed in a "sea ofirrt:vt:rsihility". As noted hefon:
(Kt:stin and RiLl:. 1970), we may he hamed by superficial "paradoxes" and. in general. the
problem of enumerating a proper st:t of independent and dependent thcrmodynamic vari­
ahles has ht:t:n solvcd f,lr a limited numbcr of cases unly. This weakness still persists in
relation to the cssential internal variables tu bt: intruduced latn.

2. 11,\('1\.( iRt JlI:"iI)

The subject of "cunventional" thenllodyn;ulliL·s. as it is taught. mort: or less cllrrectly.
in the academic departments of engint:ering in the civili/ed world. and the suhjt:ct of solid
mechanics, often taught as strength of matt:ri;ds. have devdoped largely independently of
each other. Although both. ultimately. allllw engineers to use them for design and testing
with rather satisfactory results, they arc not consistent with each uther. They certainly failed
to eonvcrge to this day. In a situation like this it is quite natural to think that. perhaps, the
foundations of both disciplines are at fault. It is interesting to note that thoughts of this kind
compelled Uridgman, when he analyzed pl;tstic deformation, to write:

TIt~r~ is a two·fold prohkm It~r~ tlt~ prohkm or ~\tcndlng th~ C(>IICCI,IU:II machin~ry 'I' a, to hc ahk 10
handk tltc ncw situatlotls. and lh~ cXI'I'rilllclllal prohkm of finding Wltdt IIt~ 1;l(ls an: ill IIt~ IlLW dlllll'llll.

It is symptomatic that several circles of scil:lllists felt compelled to invent a new and
more "rational" version of thermodynamic.... pung-:ntly presented by Truesdell (Il)X-l).:~

Nevl:rthdess, I still bdievl: that "nothing so dra ... tie as a complete revision of thermo­
dynamics is really needed" (Kestin and Bataille. 19XO). The development of "rational",
and other competing versions of thermodynamics. have compelled the more traditional
practitioners of the subject to sharpen their thoughts. concepts and words. However. since
the revisionists prefer to work in universes of discourse which differ from that of the
traditional thermodynamicist's. there has arisen a new vocabulary, and the alternative
camps have bogged down in semantic dilliutlties. In ... hort, in this first year of the last decade
of the twentieth century. a student of the joint discipline of continuum thermodynamics and
met:hanics of solids faces a veritahle Tower nf Baht'l.

I do not intt:nd to create a dictionary of the sevl:ral languages now in usc. And just as
in linguistics, the words do not stand to each othl:r in a one-to-one corrl:sponden-:e. I shall

t Th~re c\ist, " similar SitU"tlllll in nK,It'1l1i,s ({III/{ ..S {',,'{'"rl1ll/\ ./III/mh·".\}. \\"~ Itav~ Ilnt S(nrnfllily f\lrsak~1l

:"JewIllnian mcch"nics jllst hCC"llS~ it is hasLd "I) tlte Ilchulou, '''Il...~pl "f all inertictt fr"lIll: nr r~fer~nce. e4uat~s

Ihe /II mtwo equatinns witltoul reference tn an "xinm and f"ils In cakulalc" cnrr~'l:l nrhit for lhe planct Mercury.
Arc we forbidden to cakulate tlte orbit of hctlls Oil a hllhard t"hle witltoUI rckrcll'~ I" ~cncral relativity M. evell.
withnut accnuntil)~ f"r Coriolis fnrc~'·"

~Scvcral oth~r versions h"v~ "Is" hL'c'n rr"I"lSed. Se~ KLsl;1) (1'1'1(1)
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merely ex.plain the meaning of several concepts. which are essential to my presentation. in
order to let my audience understand the resulting formalism-whether they accept it as
valid or not.

3, BASICS

At the most fundamental level. thermodynamics speaks about systems rather than
materials and makes a clear distinction between the state of the system (equilibrium or
nonequilibrium) and the process (reversible or irreversible) undergone by the system. In
this universe of discourse a material lI'ith time-dependent properties or a material lI'itlz
memory represents systems which perform a process during the time they are observed.
Similarly. history represents a process which has occurred between a specified initial state
and the state under consideration. Relations between the properties (variables) of equi­
librium states are formulated as equations of state. a special role being reserved for fun­
damental equations of state from which all others follow by differentiation alone. The
corresponding statements about nonequilibrium states are in need of an elaboration which
will be presented in Sections +-7.

A reversible process is conceived as a continuous sequence of equilibrium states in time
whereas an irreH~rsibleprocess consists of a spatially distributed sequence of nonequilibrium
states varying in time. During an irn.:versihle proccss the system as well as parts of it
("suhsystcms") interact with each other. The processes of interaction are described by rate
(emilltion) e(llIatinns. /\ fundamental equation together with an appropriate set of
rate equations form the concept of a COl/stitl/til'e lall' favored by nonconventional
thermodynamicists.

Without attempting to wmpletl: this sketchy vocabulary. I shall further point out th,lt
in conventional thertlwdynamics slol'cd Cl/CI'.CJY docs not occur but is understood as the
dilh:rence in the values of some thermodynamic Ilotelltial (internal energy. lIehnholtz free
energy. cle.) between two states when one of them is normalized by an (often implicit)
Cllnvention. This is due to the fact that the dclinition of any potential leaves an arbitrary
additive constant unspecified.

~, STATE

I-laving indicated some of the semantic problems that nll.:mbers of my audience may
experience. I shall procecd with this exposition using the concepts and terminology of
conventional thermodynamics.

The concept of state is best explained by making a distinction between the physical
spacc and the (Gibbsian) phase or statc spaec. Attention is centered on irreversible processes
as they. necessarily. occur in a system. treated as a continuum. throughout which the states
an: distributed spatially and evolve in time. Accordingly. we consider an element ("point")
.1/'(x. r) of a continuum B (Fig. I). and indicate for it a selected number of cxtcnsivc

V(tl

I"~

;---,
" q((.1l

Fig, I. Physical space.
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Fig. ' Gloosian phase (state) space.

variabll:s. that is the fidds of internal energy per unit mass I/(X. f), a set of deformation
paraml:ters a(x. fl, and a set of internal variables 1(X, fl.

At this point it is necessary to make a digression in order to motivate the introduction
of the concept of an internal variable 1. following its clearest expression by Bridgman. In
our specific case we shall describe the external deformation of t1 V by the field of linearized
(small) strain per unit mass JI I f.,,( =a). with p = coma., fully adequate for the treatment
of elastic and inchlstic deformations in metals. Elements t1 V of metals which can perform
inelastic. irreversible processes are not homogeneous and thus capable of undergoing
internal transformations. such as growth of dislocations, plastic !low. diffusive migration
of atoms. slow chemical reactions, etc. Ohservations confirm that a thermodynamic descrip­
tion of the internal state (deformation) or the element L\ I' can he ohtained hy accepting
Bridgman's ( IlJ-l I ) insighLt

I heileve that in general the analysis of such sysl<:ms will hv' funhered hy the recognition of a new type of
Iaq:e·seak thermodynamIC parameter of stal<:. namdy Ihe paramder of stale willch can he measured hUI
not controlkd ... These paramelers are measmahk, but they are not eontrollahk. which means that they
are coupkd to no e\lernal force variable- Willdl might pwvlde Ihe means of conlrol. And not heing coupkd
ttl a forcv' v;lriahlc. they cannot take part in 11Icchallicli work.

The view is that, connected to the outside, each site would produce work

(I)

reversibly . Terms of the type of eqn (I) do not appear in the fidd eq lwtions which govern
the evolution of the fields in time.

Reverting to the physil.:;t1 space (Fig. I), we note that the nonequilibrium element L\ I'
interal.:ts with its surroundings during an irreversible process through a transfer of work
and heat. In general. these interactions are described by the lield F(x. f) of generalized
forces (in our case F = (i,,"the Cauchy stress), the work being

dll'= F'da (or -/1 'a"dl:" in ourcase).t

The transfer of heat is described by the heat-!lux vector liekl q(x. I). In contrast with
a and 1. F and q cannot be added over the volume dements L\ V to produce a value for the
system as a whole.

The equilibrium state of an element is uniquely described by the set

(3)

and the interaction vectors F and q vanish identically. Such a state can be conveniently
represented as a point in a space with coordinates 1/, a, 1 sketched in Fig. 2. the Gibbsian
state space. A curve R in this space represents a reversible process and it is implied that the

t I cannot restrain mvself from remarkIng that I find it dilficult to understand why so eompclhng an
interpretation has not found immediate and univ:::rsal acceptance.

: \Vork done by the system is reckoned positive. and the usual convention for stress is followed.
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v

Fig. 3. Rdation of nonequilibrium states n to state space.

internal sites are now connected to the outside. Thus. the work element on curve R is the
sum

dW = F"da+A ·dx. (4)

At this point the reader must realize that the forces. F. required to produce work on
element L\ V in the physical space will be different from those which act on it during a
hypothetical. reversible process R. By contrast. the extensive variables II. a. Ct have been so
selected that the corresponding nonequilibrium quantities possess unambiguous meanings
in physical space.

rn the case of a metal. eqn (4) is written

(5)

and the Gihhsian state space consists of seven variahles, //, JI '1:,/, owing to the symmetry

5. ACCOMPANYING EQUILlIIIUUM STATE: ACCOMPANYING REVERSIIILE PROCESS

Whereas the set (3) is sullident to specify a unique equilibrium state, the number of
parameters needed unambiguously to specify a nonequilibrium state is much larger. given
that the set (3) is included already. This situation is illustrated in Fig. 3. The base manifold
symholizes the hyperspace of equilibrium states r{ //, a. x:. An irreversible process J starts
with an equilibrium state t'l and develops nOllequilibriulll states 11 whil:h must reach outside
of r. For the purpose of further analysis, we shall associate an eq uilihrium state r with every
state 11, so that

//(r) = //(11), a(r) = a(II). 2(r) = ::t(1I). (6)

We shall eall r the accompanying equilibrium state to nonequilibriutn state 11. The possibility
of this association rests on the already mentioned ohservation that II. a, ::t have a defined
meaning for nonequilibrium as well as for equilibrium states. The same cannot be said
about the conjugate, intensive quantities F and F'. Underlying the transformation n -+ r is
the Gedankenexperiment illustrated in Fig. 4. We imagine that the element L\ V in state n

in physical
space

T,S _ _ n _==Q='===W===O=~.... _
relaxation 1

time T"

in slale
space

TO,So

u,o,a u,O,a

Fig. 4. Creating accomranying equilibrium state by a Gedankene~perimenl.
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is suddenly surrounded by a rigid enclosure so that no external work F· da can be done on
it and a is thus kept constant. We further postulate that the enclosure must be adiabatic.
inhibiting the tlow of heat. Finally. we let the internal variables 2 be arrested (frozen). so
that 2 = canst. during II -+ r. Since no work or heat is exchanged along II -+ r. the internal
energy. II. must also remain constant. In this manner the conditions of this thought experi­
ment guarantee that conditions (6) are satisfied. and we describe process II -+ r as one of
an adiabatic projection in the enlarged state space. The process of equilibrium from II to
r will involve a characteristic relaxation time r. made nondimensional by the external
characteristic time a :l and describable by the Deborah number

r
DI.'= .

a a
(7)

\Ve can go further and regard the reversible process R. imbedded in the space of
equilibrium states. as the accompanying rewrsible process to I. We postulate that the rate
at which I progresses in time is imposed on R. so that we picture here a reversible process
as one which occurs at a finite rate in contrast with the historic presumption that a n:versible
process must occur "intinitcly slowly" or must be the result of the convergence from a real
process when its rate is reduced to l.ero. I do not think that the concept of a reversible
process on:urring at a tinite rate does violence to our physical imagination. However. if the
audience members remain un persuaded they can imagine that. departing from equilibrium
at any st;lte r. the system keeps continuously reverting to itt with a negligibly short
rclaxation time Uk ~ 0).

The various proponents of um:onvcntional versions of thermodynamics often make
proposals regarding an enlargement of the manifold of states so that it would also include
states of nonequilihrium in which R could he imhedded. Ilowever. no single. convincing
proposal has yet arisen. In this lecture we emphatically do not enlarge the Gibbsian space
in order to pave the way for a clear statement of the principle of local state. The insistence
on choosing exclusively the set ()) of extensive variahles has made it possihle to define a
unique accompanying equilihrium slate r to a nonequilibrium state /I. We remind our
audience that the conjugate intensive variables have diflerent values at 1/ and at r so that
the inclusion of even one of them in the state space would make a clear adiabatic projection
trouhlesome.

(, E:-JTROI'Y AND TIIERMODYNAMIC TEMPERATURE

Many battles have been fought over the "correct" definition of the concept of entropy
(which people widely use and abuse) and of the way to assign numerical values of entropy
to states. The controversial problem is with none<.juilibrium states. The principle of local
state hypasses this issue in an cui hoc. heuristic way. For this reason. we shall merely recall,
for easy reference. how this problem is handled for equilibrium states.

Here we fall back on any standard reasoning (e.g. Carathcodory's) which asserts that
the expression for heat

dQ = dll+d ~v (8)

along a reversihle process (curve R in state space) possesses an integrating denominator
T(II. a. 2). which can he interpreted as thermodynamic temperature (First Part or Second
Law). Thus.

t Say. hy the coaxing or Maxwell's demon.
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d )
_ dQ _ ~u+F0'da+A"d:x

s(u. a.:x - T - T( u.a.:x)

is a perfect differential assuring the existence of a fundamental equation

s = s(u.a.:x)

which must represent a convex manifold in the state space.
Numerical values of entropy are calculated by integration in the state space.

i dQ
s(u.a.:x)-sn = R T-'
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(9)

(9a)

( 10)

where R is an arbitrary curve in that space. and thus. always represents a reversible process.
Here Sn is an arbitrary constant because the integral (10) has the mathematical properties
of a potential. The fact that s is a potential leads to additional. very important relations:

.. . I 2s(u. a.:x)
recIprocity relatIOns -T = --~:::--­

(U

etc.. for F/T and A/T. and

. ('11 (fF
n:l:iprol:al relations (Maxwell), =, I.

(a, (,u

(II )

( 12)

etl:.. etl:.
It should he noted that the illte~r:ll (10) callnot be evaluated ill the physical space.

cOlllnlr)' 10 wh:lt is oftell claimed ill lIollconventional versions of Ihe subject.

7. IIYPOTIIESIS OF LOCAL EQUILlBR[UM (l'RINC/I'LE OF LOCAL STATE)

Semantil:ally. the phrase hypothesis of !oca! el/llilihrillft/ is a misnomer. and for this
reason many of us prefer to 1:.111 itpril/cip!e of!oca! state. The purpose of this prinl:iplc. as
already stated earlier. is to assign a heuristically justified numerical value of entropy to a
noncquilibrium statc. Explil:it usc of this principle was introduced into continuum thermo­
dynamil:s independently by Meixner in 1941 and Prigogine in 1947.

Disregarding this semantic disagreement. I quote here its statement from the book by
de Groot and Mazur (1962).

It will n"w he: assumed th;1l although the total system is not in el.Juilibrium. there exists within small mass
clements a state of "local eljuilibrium" for which the 10c;1I entropy of is the same function as in re;1I
eljuilibrium. [n particular, we assume that the fundamental elju;llion of state remains valid fur a mass
c1emcnt along its centcr-of·mass motion. This hypothesis of "local" cljuilibrium can. from a macroscopic
pointllf view. only he: justified by virtue of thc validity of thc conclusions dcrived from it.

The gist of this statement has the effect of associating with a nonequilibrium state.
such as that of element d V in f-ig. I. the entropy and thermodynamic temper:tture of the
accompan)'in~ stale. In particular. as is evident from the Gedankenexperiment pictured in
f-ig. 4. the entropy s(r) of the accompanying equilibrium state must be larger than that of
the nonequilibrium state sen) because the former is produced from the latter by an adi:tb'ltic.
no-work process. so that

s(r) -5(11) = (J > 0, [.f(r) ~ sen)] ( 13)

(Second P:trt of the Second Law). and that the two temperatures are not exactly equal
either.
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T( r) ~ T(nl [T(r) ~ T(Il)].

The prim:iple of local state disregards (13) and (I-l) ami introduces equalities instead.
as indicated in the square brackets above.

Historically. the use of the principle of local state has led W furious controversies and
verbal battles. The acceptance of the equalities by many thermodynamicisb was made
palatable by the assertion that they are valid when "the nonequilibrium state is close to
equilibrium". Although frequently the equilibrium state in the above sentence is not specified
and no measure of distance from equilibrium is provided. we can think of this in terms of
the relaxation times r and an appropriate Deborah number. Here the reader may consult
Kestin (1990).

1\ly own conviction is a pragmatic one. The principle should be accepted in the
mechanics of solids because of its proven performance in many fields. especially in fluid
mechanics as emphasized earlier in Section I. This is the only principle which leads a
research worker to an explicit algorithm for the calculation of numerical values of entropy.
No other competing version of thermodynamics has dpne this. t

~. E~TROPY I:lALAMT. E:\TRUI'Y PR()[)UCTIO:\

From the practical point of view. the most important result of the local-state formalism
is the estahlishment of an entropy-halance equation f()r a continuum and the derivation
from it of an eXI,licit expression for the local rate of entropy production.

Depending on ;111 author's taste. it is possihle to start with a postulate for the expression
for the entropy flux or to postulate the entropy-halance equation in its entirety; it is then
called the C1allsills-()lIhem illl·(llIality. In our presentation this t;lkes the form of an equality
and a postulate requiring non-negativity of entropy production.

First. it is assunH:d that the entropy must have the standard form of a halam.:e.

with

rate OrChll/Ufe +div (jlu.\) = .I(illrn'

II/IX = (liT

( 15)

( 15a)

Equation (15) is obtained from a comhination of the energy halam:e (First Law)
written in the physical space and the Gihbs equation writtcn in phase space hut expressed
in rate form. The latta is an expn:ssion for the accompanying revasible process with the
rate of the irreversihle process impressed upon it is accordance with the discussion in Section
5.

The energy equation is

dll dl:" I~(I,

II dt = 11" dt I~X,

The Gihbs equation in rate form is

(16)

dll

dt

ds dl:" dx,,,
T dt +I'I1"dt -A", dt' ( 17)

Note the distinction hetween 11" in (16) and 11" in (17). often overlooked even by otherwise
careful authors. This can be traced to the fact that sometimes it is adcquate to assumc

t With lh<: ill<:iri<:111 <:.\<:<:rti"l1 "f E\t<:mkd Irr<:\<:r,ihl<: Th<:rnlPJYIl;Lllll<:'.
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(18)

an assumption patently inadmissible in the derivation of the Navier-Stokes equations.
It is now a simple matter to calculate the lagrangian derivative p ds/dt by eliminating

du'"dt from eqns (16) and (17) and casting the result in the form of a standard balance after
the pattern ofeqn (15). We obtain

ds C qk __ ,I
p- + fJ

dt Xk T

where the local rate of entropy production is given explicitly as

( 19)

(20)

The requirement that () must be positive is a sometimes disputed expression of the
Second purt of the Second law of thermodynamics.

It is noted that eqn (20) represents entropy production as a sum of products of
generalized forces into generalized fluxes.

The expression in eqn (20) suggests consistent forms of rate equations. These must be
written to satisfy the intrinsic symmetries of the system. It is often claimed that the rate
equations must oe line,lr in the forces and lluxes. I do not perceive this to be mandatory.
even though in many concrete cases the relations turn out to he genuinely linear. The
requirement of linearity is rooted in a reasoning which supposes that the form of () must
be consistent with that which results from a lirst-order Chapman -Enskog solution of the
Holtzmann equ,ltion for the distribution function oflow-density monatomic gases. But even
this derivation admits nonlinear foree /lux relations in the presence of chemical reactions.
as demonstrated by Prigogine {1967).

A combination of the standard balance equations of mass. momentum and energy
with the rate equations yields a closed system of partial ditlcrcntial equations; their solution.
subject to prescribed initial and boundary conditions. constitutes the process.
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APPENDIX: THE LOCAL-STATE lLOCAL-EQUILlBRILJM) FOR\I:\L1SM (CONSECUTIVE STEPS)

I. Fonnulate work in reversiblt: pnx:ess:

dW = F ·d" .....-I ·dx.

1. Write down the Gibbs equation:

dll = Tds~F 'da-,l 'dx.

J. Establish fundamental equation:

note that all variables are extensive.
use Maxwell's relations:
postulate convexity ft)r intrinsic stability.

3a. For T = const. analYSiS use Legendre transform:

d(1I E)=d(= ~,dT-F 'da-A ·dx.

and f=f(a, x) with Tas parameter.

-I, First Law in physical space:
here set a :; f:"iI' and F = ""

du (Ii:" i'.if;,.

I'dl = "" til -- ""

I:" satisfics compatihility.

5. Gihhs equation in rate form

dll <Is I dl" <Ix,,,
dl T dl + II"" <II ··.1", dl .

6. Eliminatc dllidt from -I and 5 ahme:

(AI)

(A3a)

(A5)

tis
I' .

dl
(1\6)

7. Transform 6 to standard ba1;HlCe equation form ami use l/,iT as entropy nux:

ds i' ('I')
I' J7' + "r~ T

(r\ 7)

hen: II is the local r;lle of cntropy production pcr unit volulllc.

X. Formulate rate equations.
9. Set up lidd equations and solve a system of parti;d dillcrential equations.


